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Nonrelativistic Phase-Space and Octonions 
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The octonion algebra seems to constitute the natural underlying algebra of 
nonrelativistic phase-space. A correspondence between the imaginary unit of 
quantum mechanics and the seventh imaginary unit of octonion algebra is 
proposed. Conjectures as to the possible physical meaning of some particular 
transformations from the automorphism group of octonions are presented. 

1. I N T R O D U C T I O N  

There are many indications that we still lack a deeper understanding 
of  the relationship between the macroscopic continuous space of classical 
physics and the quantum world of  elementary particles and their inter- 
actions. Among many quantum numbers characterizing elementary particles, 
only a few (e.g., spin, parity) have been related to space-time properties. 
The remaining ones (isospin, color, quark-lepton generation number) were 
introduced ad hoc in a zoological fashion when experiment forced us 
to accept their existence. Various proposals  on how to provide them with 
some  k ind  of  geometric interpretation have been made, but none has been 
generally accepted. 

On the other hand, the opinion that quantum theory requires a thorough 
revision of  our standard view on the nature of  space-time becomes more 
and more widespread. This opinion seems to be corroborated by the Bell 
(1964) theorem and the experiment of  Aspect et al. (1982). The failure of  
naively applied classical relativistic ideas and the excellent agreement of  
quantum theory with the Aspect et al. experiment may be taken to indicate 
that macroscopic  continuous space is a secondary concept. In fact, it has 
been pointed out that present theories of  particle interactions should be 
classified as c-q theories (i.e., c lassical-quantum hybrids) (Finkelstein, 
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1971), while the underlying theory should presumably be of a pure (and 
discrete) q-type (Finkelstein, 1971; Wheeler, 1973; Penrose, 1971, 1972; 
von Weizs5cker, 1955). According to this philosophy, the macroscopic 
continuous classical space and the elementary particles themselves should 
be constructed from an underlying quantum "pregeometry" (Wheeler, 1973; 
Patton and Wheeler, 1975; Penrose, 1968). Presumably, neither position 
nor momentum (Penrose, 1971, 1972) coordinates should appear in such 
an approach at the basic level. Thus, this philosophy goes further than the 
S-matrix approach, which dispenses with the notion of space-time con- 
tinuum, but retains the continuous momentum space as one of its funda- 
mental concepts. It is then a priori not excluded that within such a revised 
scheme it might be possible to achieve a unified (and hence geometry- 
related)  interpretation of  both conventional geometric and internal degrees 
of  freedom. 

Attempts to disclose the nature of quantum pregeometry centered upon 
the reinterpretation of quantized spin as one of its basic ingredients (Finkel- 
stein, 1971; Penrose, 1971, 1972; Finkelstein, 1972, 1974). Therefore, if other 
discrete quantum characteristics of elementary particles are to be related 
to the properties of space in a similar manner, it seems that we should 
probably first seek a generalization of the classical concept of continuous 
rotation. A step in that direction is proposed in this paper. 

The proposed generalization is based on a wish to bring more symmetry 
between the canonically conjugate position and momentum coordinates of 
nonrelativistic physics. Consideration of momentum and position coordin- 
ates (which have just been argued to be inappropriate at a deeper level) is 
here auxiliary and is used to arrive at a particular generalization of  the 
concept of continuous rotation. Over 40 years ago similar symmetry argu- 
ments led Born (1949) to his reciprocity theory of elementary particles. 
Born's theory was based on the observation that the laws of  nature (both 
in classical and quantum cases) seem to be invariant under four-dimensional 
transformations Xk ~ Pk, Pk ~ Xk, k = 0, 1, 2, 3. TO allow for such transforma- 
tions, he split the Planck constant into a product  of  fundamental length 
and fundamental momentum. Equivalently, we may consider the two funda- 
mental constants to be the Planck constant (the quantum constant) and a 
new constant k of dimension [GeV/cm].  The introduction of k permits the 
combination of two separate invariants p2 and x 2 into a single form p2 + x 2 
and the subsequent consideration of all momentum and position transforma- 
tions that leave this form invariant. The reciprocity transformations of Born 
are among them if the " + "  sign is chosen. We shall see later that the " - "  
sign is excluded by another argument, too. 

The idea of permitting transformations of momentum into position and 
vice versa was considered by many physicists, but, to my knowledge, never 
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in the form and with the interpretation suggested below. To arrive at the 
proposed generalization of the concept of rotation, arguments based on the 
properties of  both classical and quantum formalisms will be employed. In 
the following only the six-dimensional form p2+ x 2 shall be discussed. The 
reasons for this restriction are as follows. 

In the classical Hamiltonian formalism in which momentum and posi- 
tion are treated symmetrically there exists an important distinction between 
time (a parameter) and space (or momentum) coordinates (which are 
functions of  this parameter). This lack of  symmetry between the coordinates 
of  space and time is even more pronounced in quantum mechanics, where 
time is always a parameter, while space (momentum) coordinates are 
operators. Serious mathematical or physical difficulties were encountered 
in all attempts to include time as a quantum mechanical operator [see Bayer 
(1983) for a review and an attempt to construct a quantum mechanical time 
operator]. 

In fact, this situation constitutes a part of the problem of  a fully 
satisfactory unification of  special relativity and quantum theory. The 
opinion that these theories have not been satisfactorily unified has been ex- 
pressed by many physicists (Finkelstein, 1972; Dirac, 1973; Finkelstein and 
McCollum, 1975; Chew, 1971; Wigner, 1957). Some of the relevant argu- 
ments are as follows. 

1. Present unification of  the principles of  relativity and quantum theory 
in the form of quantum field theory is formulated on the background of 
classical continuous space-time, which, as we have just argued, may be a 
bad starting point (Dirac, 1973; Finkelstein and McCollum, 1975). 

2. The experimental confirmation of the existence of quantum correla- 
tions between spatially separated events raises the question of the very 
applicability of  classical relativistic ideas to quantum systems. 

3. Furthermore, in discrete finite models there exists an additional 
incompatibility between the principles of  relativity and quantum theory: 
there exists no nontrivial finite-dimensional unitary representation of the 
Lorentz group (Finkelstein, 1972, 1974). 

This situation seems to indicate that the relativistic symmetry of classical 
physics emerges as appropriate for the description of  the world only at a 
higher and more complex level of the pregeometric scheme (Wheeler, 1973). 
In this paper we are interested in the least possible extension of the concept 
of rotation within the general p + x philosophy. Therefore, the problem of 
how to recover relativistic invariance is left untouched. 

In the next section it is shown that the symmetry group relevant for 
the nonrelativistic phase space is U(1) x SU(3). The SU(3) symmetry group 
is then considered in Section 3 as the group of automorphisms of the 
underlying algebra. It is pointed out that the octonion algebra seems to be 
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uniquely chosen as the natural algebra underlying phase-space transforma- 
tions. The correspondence between the imaginary unit of quantum 
mechanics and the seventh imaginary unit of octonions is proposed there 
as well. Conjectures as to the possible physical meaning of some particular 
transformations from the automorphism group of octonions are presented 
in Section 4. Further possible development of the ideas of this paper is 
briefly touched upon in Section 5. 

2. NONRELATIVISTIC PHASE SPACE 

The form p2+x2 is invariant under the 0(6)  group of transformations. 
We require that the Poisson brackets (commutators in quantum case) of 
the new positions and momenta (p', x') are the same as those of the old 
ones (p, x), i.e., that the Poisson brackets (commutators) are form invariant: 

{Pl, P~} = {P,, Pk} = {xl, x~,} = {xi, xk} = 0 (2.1a) 

{Pl ,  x'k} = {Pi, xk} = ~ik (2.1b) 

This requirement is weaker than that of Born, who required the invariance 
of the classical expression for the angular momentum as well. Since we 
seek a generalization of the concept of rotation, we should not require such 
an invariance. Equations (2.1) restrict the allowed transformations to a 
subset of SO(6) transformations. Let us label the momentum and position 
coordinates as follows: 

(ZI, 2"2, Z3, Z4, Z5, Z6) = (P l ,  P2, P3, Xl, X2, X3) (2.2) 

The 15 generators G ik= - G  ki= G Eik] of  SO(6) whose defining matrix 
representation is 

( G ' " ) , k  = ~ 7 ' ~  - 6"~ 6~ (2.3) 

satisfy the SO(6) commutation relations 

[Gm", G kt] = 6 n k G m t  + 6 m l G  nk - ~ m k G n l  -- ~ n t G m k  (2.4) 

Since standard rotations in three-dimensional space must be understood as 
simultaneous rotations of p and x, we first introduce a more suitable basis 
for the generators of $0(6) ;  

j1 = G32q_ G65, R 1 = 641, H I  = G62q_ G53 
(2.5) 

K 1 = G32 _ G65, Q1 = G 6 2  Gs3 

(and cyclically: 1 -+ 2-+ 3 ~ 1, 4 ~ 5 -+ 6 -+ 4) 

where jk  are the generators of standard rotations, under the operation of 
which the Poisson brackets (2.1) remain obviously invariant. 
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Let us now consider rotations in pk-Xk planes, generated by R k. We 
immediately find that under rotations by arbitrary angles in these planes 
the PBs of equation (2.1) still remain invariant. When enlarged by the 
rotations generated by {R k} the so(3) -- su(2) Lie algebra {jk} of standard 
rotations closes under commutation relations with the inclusion of H k 
generators. Thus, the PBs (commutators in quantum case) of momentum 
and position are invariant under arbitrary transformations generated by the 
nine-dimensional Lie algebra of {jk, R k, Hk}. 

On the other hand, a general transformation generated by K 3 

[ p~] = [ cos4, sin 4,] [ p l ] ,  P~=P3 
P~_] L-sin ~b cos ~b LP2.I 

[ x~] = [cos 4~ -sin 4~] Ix, I ,  Xr3~_.X3 
x~J [_sin & cos 4~ dLX2-1 

(2.6) 

leaves the PBs of equation (2.1) form invariant only if & = 0, 7r, which, in 
fact, constitute particular cases of standard rotations. A similar result is 
obtained for Qk. 

Renaming the generators as 

R = R 1 + R 2 + R  3 

FT=J  1, F s = J  2, F 2 = - J  3, F 3 = R I - R  2 (2.7) 

F 6 = H  l, F 4 = - H  2, F , = - H  3, Fs=(Rl+R2-2R3) /~ /3  

one calculates from (2.4) and (2.5) that (1) R commutes with all Fk, and 
(2) the Fk satisfy the standard commutation rules of the su(3) Lie algebra 

[Fi, Fk] = 2fkjFj (2.8) 

with totally antisymmetric structure constants fkj equal to 1 for ikj = (123), 
1/2 for ikj = (147), (165), (246), (257), (345), (376), x/3/2 for ikj = (458), 
(678), and zero otherwise. 

The sought group of invariance is thus U(1)xSU(3).  Both the 
reciprocity transformation p '= x, x '= - p  and the overall reflection p '= -p ,  
x ' = - x  are understood here as special kinds of rotations in phase space 
(with OR respectively ~r/2 or 7r) generated by the U(1) generator R. The 
appearance of the special unitary group SU(3) is well known from the 
nonrelativistic quantum harmonic oscillator (see, e.g., Wybourne, 1974), 
where it leads to additional degeneracy of the spectrum, often called 
"accidental" and sometimes "dynamical." Here we stress its suggested 
fundamental interpretation as the minimal simple-group extension of the 
group of standard rotations to those transformations of canonically conju- 
gated momenta and positions that leave both their Poisson brackets (commu- 
tators in quantum case) and the phase-space metric p2+ x 2 invariant. 
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3. OCTONIONS AS THE UNDERLYING ALGEBRA 
OF PHASE SPACE 

It was argued that the most natural language in which both geometric 
(Hestenes, 1966, 1967, 1971) and pregeometric (Frescura and Hiley, 1980) 
concepts should be expressed is that of a "geometric algebra." For the 
three-dimensional classical nonrelativistic space the geometric algebra 
appropriate to represent rotations through algebraic multiplication was 
discovered 150 years ago by Hamilton (1967). Hamilton's quaternions 
constitute arguably the most natural language for the description of classical 
rotations. Multiplication of two (k = 1, 2) arbitrary elements 

ak = a~ + a~e~ + a~e2+ a3e3 

of the quaternion algebra Q is associative and distributive and is specified 
by the multiplication rules 

e i e k  = --~ikeo-b eikjej (i, k , j  = 1, 2, 3) (3.1) 

with eo being the unit element of the algebra. Multiplication (3.1) may be 
represented by 2 x 2 Pauli matrices (1, i * Crk}. Coeff• a ~ are real num- 
bers and they commute with quaternionic units e~ (/z = 0, 1, 2, 3). Every 
quaternion possesses its conjugate i obtained by reversing the signs of 
coefficients of ek (k - -1 ,2 ,3 ) ,  and norm N(a) (=a~),  which is a real, 
nonnegative number. 

Multiplication rules (3.1) are invariant under the SO(3) group of 
rotations 

e~ = O~ei  (3 .2)  

where O belongs to SO(3). 
The automorphisms (3.2) may be represented by 

a --> a' = sas  -1 (3.3a) 

with an appropriate quaternion s. Equation (3.3a) expresses the rotation of 
the scalar a~ and the bivector akek in a purely quaternionic language. 
When further rotation described by s' is applied to a' from (3.3a), the 
quaternion s" describing rotation from a to a" is given by 

s" = s's (3.3b) 

The quaternion s transforming (under rotations described by s') according 
to (3.3b) is called a spinor. The geometric meaning of a spinor is operational 
since it describes the rotation itself: it transforms one bivector into another 
according to (3.3a) and one spinor into another according to (3.3b) 
(Hestenes, 1966, 1967, 1971). 
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One might consider quaternions over the field of complex numbers 
(a" complex). Such "biquaternions" are most often used in the treatment 
of four-dimensional relativistic space-time. In the nonrelativistic scheme 
the commuting " i"  appears with a geometric interpretation of a unit pseudo- 
scalar (Hestenes, 1966, 1967, 1971). However, as long as we do not deal 
with reflections but rotations only, such an additional commuting imaginary 
unit is superfluous (Hestenes, 1966, 1967, 1971). 

In this section we shall seek a geometric algebra lying at the origin of 
phase-space symmetries and analogus to quaternions. Thus, the group of 
automorphisms of this algebra should be or should contain SU(3). We 
should avoid "geometrically" uninterpreted "imaginary units" slipping into 
our construction as long as it is possible (Hestenes, 1967). Since our SU(3) 
symmetry group does not include reflections, the commuting (pseudoscalar) 
" i"  of Hestenes (1967) is not allowed. Thus, we restrict the field of algebra 
coefficients to be real (see also Jordan et al., 1934). For physical reasons 
the sought algebra should contain the unit element to represent the identity 
transformation. Also, it should contain the quaternion algebra Q as a 
subalgebra, just as the quaternion algebra Q contains the algebra(s) of 
complex numbers relevant for the description of rotations in two dimensions. 

The presence of the imaginary unit in the formalism of quantum 
mechanics was the subject of several investigations and generalizations 
(Jordan et al., 1934., 1934; Stueckelberg, 1960; Finkelstein et al., 1962, 1963). 
Hestenes (1966, 1967, 1971) proposed a geometric interpretation of the 
quantum-theoretic i in terms of the unit pseudoscalar, but this interpretation 
is by no means necessary (Hestenes, 1967). In fact, it is in conflict with the 
form invariance of the Poisson brackets (2.1b) and their quantum 
mechanical counterparts under ordinary reflections. 

The appearance of i on the rhs of the QM version of (2.1b) strongly 
suggests the introduction of another imaginary unit into the underlying 
algebra. However, it cannot be understood as an ordinary (and commuting) 
i, since then the resulting algebra would be equivalent to the algebra of 
biquaternions, whose group of automorphisms is different from SU(3). Let 
us call this new imaginary unit e7. Thus ,  this " i"  will be treated on equal 
footing with ek, whose geometrical meaning is well appreciated. 

By assumption, 

eTeo=eoeT=e7 

eTe7=-eo 
(3.4) 

a n d  e7 transforms trivially (G = e7) under the SO(3) and SU(3) groups of 
transformations. To maintain the proposed interpretation of e7 we require 
that in subsequent multiplications of spinors (= quaternions) by e7 from 
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the left the latter behaves like the ordinary imaginary unit, i.e., that after 
two multiplication by e7 a quaternion changes its sign: 

e7(e7ek) = --ek (3.5) 

The requirement (3.5) may be rewritten with the help of the associator  

(a, b, c) ~- ( a b ) c  - a ( b c )  (3.6) 

as follows: 

(e7, e7, ek) = 0 (3.7a) 

For multiplications of spinors by e7 from the right we require similarly 

(ek, e7, e7) = 0 (3.7b) 
Let us denote 

e k +  3 = e 7 e  k (3.8) 

The elements ek+3 are necessarily nonzero and they constitute three addi- 
tional linearly independent elements of the algebra. Clearly, ek+3 transform 
like ek under SO(3) [compare (3.2)]: 

e ~ + 3  i = O k e i +  3 (3.9) 

The SO(3) transformations (3.2), (3.9) may be written in the form 

e ~ + e ; / =  O~ O~ 0 3 / / % + % /  (3.10a) 

e ; •  O~ 0 2 033JLe3• 

Equation (3.10a) contains two equations: either with "+"  or with " - "  signs. 
Among the SO(6) transformations on el . . . .  , e6 which preserve the 

multiplication rule (3.8), there are simultaneous rotations in (1, 5) and (2, 4) 
planes. With the help of (3.5), (3.8) these may be written in a form similar 
to (3.10a): [~ [ cos,,~ e7sin~12 ol[o,~e, l 

e ~ ; /  -- eT sin 6,2 cosO,20//%• / 
e;+e;J o o 1JL%+e6 J 

(3.10b) 

Two further types of such simultaneous rotations in different pairs of planes 
are described by formulas obtainable from (3.10b) by cyclic permutations: 
1 ~ 2 ~ 3 ~ 1 ,  4 ~ 5 ~ 6 ~ 4 .  

The remaining SO(6) transformations preserving (3.8) are 

e~o~/= exp(-o~,,) //o~• (3.10c) 
e;+e~J 1 JLe3• 
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[ e'l + e~] [ exp(e7x) l ie1 •  
e ~ i e ;  = exp(eTX) | l e 2 •  

e; + eL e x p ( - 2 e 7 x ) / / / j L  e3 • e6 3 

(3.10d) [el e4] 
e~• / = exp(e7to) e2• 

e~• e 3 •  6 

(3.10e) 

Since (e7, e7, ek) = (e7, e7, ek+3) = 0, we may consider the 3 x 3 matrices in 
(3.10) separately from the column vectors they act on. Clearly, these matrices 
form the U(1) • SU(3) group. 

Under the SU(3) transformations of  equations (3.10a)-(3.10d) the 
multiplication rules of our algebra are to be invariant. This requirement 
restricts the a priori arbitrary multiplication constants of {en, em+3} as 
follows: 

e m e i +  3 : ol~ - OZ7~rnie7 - -  Eminen+3 

e m + 3 e  i : -oL~ a 7 ~ m i e 7 -  Eminen+3 (3.11) 

e m + 3 e i + 3  : - ~ m i e o -  Eminen 

where a 0"7 a r e  still arbitrary real numbers. To fix them, SU(3) alone is not 
sufficient, since it cannot transform e7 into any one of ek. 

One may wonder if one could possibly impose the requirement of the 
invariance of  the multiplication table under U(1) of (3.10e). However, the 
U(1) transformation (3.10e) leaves (3.1) invariant for to=0,  2 +~"  only. 
The remaining nontrivial discrete U(1) transformations to = + ~ -  are equiva- 
lent to the SU(3)  transformation (3.10d) for X = +~Tr. Thus, no restrictions 
on a ~ can be obtained in this way. To proceed, one has to impose some 
other additional assumption(s). 

Before doing that, let us note that equations (3.1), (3.11) already suffice 
to establish [by direct calculation of the associators, say of (era+3, ei,  e j ) ]  
that the sought algebra is not associative. It may also be checked that the 
Jacob• identity in general is not satisfied: 

[[e~,ej],e,.+3]+[[ej, em+3],ei]+[[em+3,e~],ej]~O (3.12) 

Thus, the algebra is not Lie-admissible (Santilli, 1968; Myung, 1978). 
To fix a ~ more symmetry between e7 and ek, ek+3 is needed. Assume 

therefore that the following generalization of equation (3.7) holds: 

(eM, eM, ex) = (e,, eM, eM) = 0 ( M , I = 1 , 2 , . . . , 7 )  (3.13) 
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This assumption ensures that all era behave like imaginary units:'in the 
product eMeM(A~ +ANeN) there is no need for parentheses specifying 
which multiplication should be carried out first. Assumption (3.13) suffices 
to fix the multiplication table completely: 

emei = -~mieo q- Emikek 

e m + 3 e i + 3  : - ~ m i e o -  Emikek 

e m e i +  3 = ~mie7 - Emikek+ 3 

e m + 3 e  i : -~mie7 - Emikek+3 (3.14) 

e 7 e 7 : - e o  

e 7 e i : - e i e 7 : e i + 3  

e 7 e i + 3 : - e i + 3 e 7 : - e i  

The multiplication table (3.14) may be represented in a convenient way by 
the diagram of Figure 1, in which the element e7 has been singled out. The 
algebra (3.14) is the octonion division algebra l-I of Cayley (1845) and 
Graves (1845). 

In complete analogy with quaternion conjugation, every octonion A = 
A ~  + A M e M  possesses an octonion conjugate .~ obtained by replacing eM 

e 5  

e6 

e 
e 4  

Fig. 1. D i a g r a m m a t i c  r ep resen ta t ion  of  the oc ton ion  mul t ip l i ca t ion  table.  Ar rows  ind ica te  
the d i rec t ions  a long  which  mu l t i p l i ca t i on  has  a pos i t ive  sign, i.e., e6e 2 = e4, e6e 1 = - e  5. 
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-eM ( M - 1 , 2 , . . . , 7 ) ,  the mapping A-~.~ being antiautomorphic: by 
(AB) = B.~,. The norm of the octonion A is given by 

N(A) = AA = AA (3.15) 

and it defines the scalar product  of two octonions A, B as follows: 

(A, B) = I N ( A §  B) - N ( A ) -  N(B) ] /2  (3.16) 

Furthermore, the octonion algebra is a composition algebra, i.e., N(AB) = 
N ( A ) N ( B )  and it is alternative: for any three octonions A k ( k  = 1, 2, 3)  the 
associator (Ai, A~,Ak) is proportional to eijk. Its further mathematical 
properties may be found in Gfinaydin and Gfirsey (1973a) and Schafer 
(1966). 

It is known that the group of  automorphisms of the octonion algebra 
is the exceptional Lie group G 2 and that when any one of the seven imaginary 
units el,  e2,. �9 �9  e7 is held fixed the group of  automorphisms is reduced to 
SU(3) (see, e.g., Giinaydin and Gfirsey, 1973a). On the basis of the latter 
property we might have pointed out the octonions as a candidate underlying 
algebra of phase space as soon as we proposed to relate the QM i to a new 
SU(3)-invariant  imaginary unit e7 of the algebra. We chose a different way 
of proceeding in order to show that the SU(3) symmetry group of the 
nonrelativistic phase space--when combined with physically motivated 
requirements imposed on the sought algebra, i.e., with (1) the existence of 
the unit element (identity transformation), (2) the existence of quaternion 
subalgebra (natural description of three-dimensional rotations), (3) and the 
"pseudoalternativity" or "pseudodivision" property (3.7) for e 7 (corre- 
sponding to its i2= _ 1 interpretation)--suffice to establish that the algebra 
is neither associative nor  Lie-admissible. 

Neither the assumption that the sought algebra is a composition algebra 
nor the requirement of  the existence of division for all elements of the 
algebra (which sometimes are used to single out the octonions through the 
Frobenius or Hurwitz theorems) played any role in our considerations. 
The assumption of the existence of a generalized "pseudodivision" (3.13) 
needed to fix all multiplication constants is still relatively weak in the sense 
that it admits all the hypercomplex numbers 3 formed by the Cayley- 
Dickson process (Dickson, 1927). 

The proposal to relate the seventh octonion unit ev to the standard 
imaginary unit i of  quantum theory was made earlier in Gfinaydin and 

3The "pseudodivision" property permits division for basic elements of these algebras [defined 
step by step in a manner analogous to (3.8)], but not for all their elements. Since the group 
of  automorphisms of  higher hypercomplex numbers is also G2 (Schafer, 1954), it seems quite 
possible that they might be of  some importance in the physics of  phase space, too. 
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Giirsey (1973b), but (1) the relation proposed there was not as minimal as 
here, where the ordinary commuting i is simply absent, and (2) the scheme 
was not geometrically motivated. 

The choice of the p2_x 2 form would have led us along similar lines 
through the group SL(3,  R )  to split octonions. Their multiplication table is 
obtainable from (3.14) by a formal replacement e0 := eo, ek := ek, ek+a := iek+3, 
e7 := ie7, with i an ordinary complex number, playing a purely auxiliary 
role. We would have obtained then that eTe 7 :--~e0, in disagreement with 
the i2= -1 property of the QM i. This QM-based argument excludes there- 
fore the p~-x 2 form. 

It is important to realize that the G2 group of automorphisms [although 
larger than SU(3)] does not contain the U(1) factor (3.10e). Thus, the 
concept of three-dimensional reflections lies outside the octonion algebra. 

As the quaternion algebra is the natural algebra to represent rotations 
in three-dimensional space, so does the octonion algebra seem to be the 
natural algebra underlying the transformations of the nonrelativistic phase 
space. It is not obvious in what way this algebra should be used in the 
construction of a physical theory, however. Despite that, some conjectures 
as to the possible physical meaning of the genuine [i.e., lying outside SO(3)] 
G2 transformations may be offered. These conjectures are presented in the 
next section. 

4. AUTOMORPHISMS OF OCTONIONS AND 
PARTICLE SYMMETRIES 

For the purpose of our subsequent discussion let us first express the 
Dirac equation in the algebraic framework. To do this we must extend 
the algebra since under reflection H the basic elements of the quaternion 
(the bivectors) and octonion algebras do not change: H(eM)=eM. One 
achieves this extension by the introduction of a unit pseudoscalar denoted 
by i and subsequent direct product construction (Hestenes, 1966, 1967, 
1971). The pseudoscalar i changes sign under reflections: 

i--> II(i) = - i  (4.1) 

and may be represented as follows; 

i------[ 01 1 0 ] = - - i T , _  i2=--1 (4.2) 

The operation of reflection is then represented by 

i-> i '= PiP -l = - i  (4.3) 
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with 

The versors of  the three-dimensional space of vectors are constructed 
as direct products etk = - - i  X ek, or 

so that I I (~k)  = _ p / p - 1  x II(ek) = i x ek = --~k- 
The Dirac equation in momentum representation is then 

( o l k p k + m ~ ) ~ = E ~  with ~ =  02 

and �9 may be normalized by ~ + ~  = ~101 + ~202 = 1. The Hermitian conju- 
gate of  the bispinor �9 is defined here by 

xp+ = Sr = [O, ,  02] (4.6) 

(To be consistently nonrelativistic, p2 must be much smaller than m 2, of 
course.) A v e r y  i m p o r t a n t  feature of  the chosen representation is that the 
imaginary unit e 7 corresponding to the customary quantum mechanical i is 
n o t  p r e s e n t  in the above formulas. Thus, these formulas do not contain 
any imaginary unit lacking a standard geometrical interpretation (see also 
Hestenes, 1966, 1967, 1971). Clearly, should e7, ek+3 appear  in our formulas, 
the definition (4.6) of  the Hermitian conjugation must be understood as 
containing the ( - )  operation in place of  (-): in general, ~ + =  ~ T  

The solution of the Dirac equation (4.5) consists in finding a pair of  
spinors corresponding to the given momentum and mass. Alternatively, 
given a pair of  spinors (491,O2), we may construct the corresponding 
momentum and mass as follows: 

p k Ce k = i E q* r i CI * = i E ( O l gP 2 - (Io2(~)1) 

m = ExIsT~CI  r = E(qb,c~z + qb2~,) 

(4.7a) 

(4.7b) 

Through equation (4.7b), the mass is then expressed in terms of a product  
of  two quaternions. 

Let us now discuss briefly some particular automorphisms of the 
octonion algebra which lie beyond the rotation group SO(3). To preserve 
the correspondence e7 ~ iQM, the G: transformations must be restricted to 
those that keep e 7 invariant up to a sign. 
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4.1. Complex Conjugation 

Let us denote the analog of the standard operation of complex conjuga- 
tion under which iOM ~ --iQM by ( )*, i.e., ( e 7 ) *  = --e7. Under the operation 
( )* we have (ek)* = ek and [following definition (3.8)] (ek+3)* = --ek+3-The 
operation ( )* is an automorphism of octonions, (AB)* = A'B*, and thus 
it is a G2 transformation [obviously, however, it does not belong to our 
original SU(3) group of transformations (3.10a)-(3.10d)]. It may be rep- 
resented as a particular case (~:= 7r) of the analog of (3.10c) with e7~one 
of ek (say, k = 1 and hence e~ = el), keeping also e, for n = 2, 3 invariant: 

e ; + e ;  / = exp(-els  c) e6+e5 / (4.8) 

e~+e~.] 1 e2+433 

The quantum-theoretic operation of complex conjugation is known 
to be related to both time-reversal and charge conjugation. In standard 
approaches one needs two representations of the Lorentz group (mutually 
complex conjugate) to describe particles and antiparticles. The antiparticles 
are then interpreted as negative-energy particles moving backward in time. 

The association o f p k  with ek in (4.7a) means that the (32 transformation 
corresponding to (4.8) acts on the phase-space coordinates as follows: 

P~, = Pk (4.9a) 

x'k = -- Xk (4.9b) 

and it does not affect mass, so m ' =  m. Similarly, E ' =  E and if E > 0, so is 
E'. The complex conjugation of the QM i (i' = - i )  corresponding to e~ = -e7 
is then necessary to make QM commutation rules invariant under (4.9). If 
the correspondence between iQM and e 7 is to be maintained, the only 
reasonable interpretation of the ( )* operation is that it leads essentially 
from particles to antiparticles. Particles and antiparticles should therefore 
be related to each other by the simultaneous operations of complex conjuga- 
tion and inversion (4.9b) of the position space while keeping their momenta 
unchanged, (4.9a). This relationship between particles and antiparticles 
does not manifest itself clearly in the Dirac equation (4.5). Since the ( )* 
operation is an automorphism of octonions, the transformations between 
particles and antiparticles lie within G2. 

4.2. Genuine SU(3) Transformations 

The quaternions a = a~ + akek form a subalgebra Q of the octonion 
algebra ~.  Further quaternionic subalgebras of octonions can be obtained 
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from Q by the application of the Ga transformations. Any such quaternionic 
subalgebra can be "generated" by choosing two purely imaginary ortho- 
normal [in the sense of (3.16)] elements El, E2 as two of its basis elements. 
The algebraic multiplication then generates the remaining element: E 3 = 

E1E2 (and the unit element). For example, the original quaternion subalgebra 
Q is defined by choosing E l=e l ,  E2=e2 or by choosing El=e2, E2= 
COS ~ e3 + sin ~ el, etc. 

In Sections 2 and 3 there was a complete symmetry between the 
coordinates of momentum and position. Such a symmetry is not present in 
nature, however: the four-dimensional distance x 2 is continuous, while only 
particular (quantized) values of p2 are allowed for elementary particles. 
Thus, the introduction of the concept of mass somehow breaks the complete 
p ~-~x symmetry. Although we do not know what the mechanism of mass 
generation is, it seems natural to suppose that it is related to the existence 
of a quaternionic subalgebra Q of octonions as exemplified by equation 
(4.7b) in which standard (lepton) mass is expressed solely through (pairs 
of) quaternions from Q. It seems then also natural to suppose that the same 
mass-generating mechanism works in a similar way in other isomorphic 
quaternionic subalgebras. Below it is pointed out that there are three such 
additional isomorphic subalgebras which seem to be especially interesting 
because they are, in a sense, maximally orthogonal to each other and to Q. 

Let us consider the genuine SU(3) transformations generated by F3 
[see (3.10c)]. Under these transformations the quaternion subalgebra Q is 
mapped onto another subalgebra Q(F3, ~b). We shall take ~b = +~-/2. Only 
for these choices of ~b does there exist a possibility of choosing--as the 
elements generating the two subalgebras Q and Q(F3, O)--such pairs of 
elements which are mutually orthogonal [i.e., (e~, e2)  and (e4, es)]. The 
resulting quaternion subalgebra Q 3  = Q ( F 3 ,  : i : , n - / 2 )  is then built upon the 
elements Co, e4, es, Ca. Two further such subalgebras Q1, Q2 can be obtained 
by transformations generated by an appropriate combination of F3 and F8 
and are built upon the elements Co, e~, es, e6 and Co, e4, e2, e6, respectively. 
For any two of the above four subalgebras Qo, Q~, Q2, Q3 (Qo---Q) one 
can choose such pairs of generating elements which are mutually orthogonal. 
No further algebras with this property can be reached through SU(3) 
transformations [nor through the ( )* operation]. Subalgebras Q1, Q2, Q3 
are obtainable from each other through ordinary three-dimensional rotations 
(3.10a) by ~r/2 in appropriate planes. 

One may now immediately write down the analogs of equation (4.7) 
for the subalgebras Qn : 

p(n)^,(n)  ;r;[d~(n)~n(n) __ tl-~(n)t~(n)~ 
k t ' tk = ~'L'k'X"l "~"2 "~2  "~1 / 

(4.10) 
m ( n )  (n) ~ (n) ch(n)~n(n)'~ 
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where re(n) "~ 1,2 ~ Qn and 

n O/~ n) ~ ~2~(n) ~ ~3~(n) ~~ <~ ~ >  x?~, x~ n~, x~ ~ P l  , P 2  , F 3  

Zenczykowski 

1 - i  x e~, - i  Xes, - i x e  6 p l , x 2 ,  - x  3 x l , - p 2 , p  3 

2 - i  x e4, - i  X e2,  - i  x e  6 - - x l , p 2 , x  3 P I , X 2 ,  --P3 
3 - - i  X e4,  - - i  X e s ,  - i x e  3 X 1 , --x2,P3 - -p l ,P2 ,X3  

Expressions (4.10) are not rotationally and translationally invariant. I 
wish to conjecture here that they should be associated with the existence 
of quarks and that precisely these features of theirs are responsible for the 
nonobservability of free quarks in our macroscopic classical world 4 to which 
the concepts of  continuous momentum and position inherently belong. The 
above does not mean that in a quantum framework the quarks should not 
be described by Pauli spinors. However, if the above conjecture is basically 
correct, the use of  the standard Dirac equation with its orthodox concept 
of  quark mass is conjectured to constitute a phenomenological approxima- 
tion only. This would be welcome, since in elementary particle physics the 
use of the Dirac equation for quarks--depending on the domain of its 
application--leads to two different sets of values for (so-called "current"  
and "consti tuent")  quark masses (see also Schwinger, 1967; Zenczykowski, 
1985). 

5. OUTLOOK 

Further development of the ideas of the preceding section requires 
presumably a thoroughly discrete (quantum) approach. In fact, we have 
already introduced a sort of discreteness by singling out specific discrete 
G2 transformations. On the other hand, our considerations have still been 
classical rather than quantum. Indeed, the quaternion itself is a classical 
geometrical object (a combination of a scalar and a bivector). Imaginary 
quaternions (bivectors) describe the continuous array of rotations in the 
three-dimensional space. Such a continuous array of directions was shown 
to emerge from the spin-network combinatorial approach (Penrose, 1971, 
1972). What seems to be needed is therefore such a generalization of the 
spin-network idea which, in the limit of large quantum numbers, would be 
related to octonions in a similar manner as quantum spin is related to 
quaternions. This hypothesized network is supposed to contain a discrete 
description of quark confinement and entail the emergence of qqq and qt] 
hadrons as those objects for which the concept of mass has its or thodox 
meaning. To make this idea workable, a more detailed proposal concerning 
the mechanism of mass generation is needed. As a final remark, it should 

4A different (geometry-unrelated) use of octonions to explain the nonobservability of quarks 
was proposed in Giinaydin and Giirsey, 1973c). 
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be pointed out here that the above association of the network idea with the 
problem of strong interactions receives somewhat independent support from 
the success of a W-spin network approach to the description of hadron 
masses (Zenczykowski, 1988). 
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